
CSS CheatSheet Books
Cascading Style Sheets is a style sheet language used for describing the presentation of a
document written in a markup language such as HTML or XML

Table of Contents

Inline CSS
Internal CSS
External CSS
CSS Selectors
Units

Absolute units
Relative units(preferred)

Display Properites
FlexBox
The direction of flex is consider the main axis and the other axis consider as
cross axis
CSS Grid
Variables
Animations
Transitions
Media queries

Desktop first approach
Mobile first approach
Orientation first approach

Pseudo - Class

Inline CSS
style attribute is used to define CSS properties at each HTML element.

Internal CSS
You can define CSS properties using the <style> tag in the <head> section.

<h1 style = "color:blue; font-size:40px; font-style: italic;"> One Compiler </h1>

External CSS
<link> tag is used to refer to an external CSS file.

CSS Selectors
You can select elements based on their name

or you can use both class based or id based css selection.

there are also more fun selectors for different use cases that could be helpful in the long
run when you’re having a massive project and making tons of classes won’t be viable to
handle, such as:

Selector What it does?

* * selector selects and gives you all the elements individually, so
you’re essentially selecting all the elements one by one rather than

<head>
 <style>
 body {background-color: pink;}
 h1 {color: red;}
 h2 {color: green; font-size : 40px; font-style: italic;}
 </style>
</head>

 <link rel="stylesheet" href="styles.css" />

 div {
 font-familt:'Inter',sans-serrif;
 max-width:400px;
 }

 // classed based
 .container {
 background:red;
 height:600px;
 }
 // id based
 #container {
 background:purple;
 margin:10px;
 }

Selector What it does?

having a parent controlling the styling

element1,element2
The example of this syntax could be div,p{ ... } this allows you
to select all element1 and element2 from the html

element1 element2
Replacing the comma(,) with a space helps you in selecting all the
element2 which are inside element1, for eg: div a{ ... } means
all the anchor tags(a) which are inside a div

element1 >
element2

Much like how the space works, it gives the all the element2 who
are directly inside element1 for eg.: div>p{ ... } means all the
<div><p> </p></div> will be selected but not <div><p>

</p></div> because p is not the direct child

element1 +
element2

Quite rarely used but quite useful in some cases, it selects
element2 which is directly after element1 for eg.: div+p{ ... }

means all the <div> ... </div><p> ... </p> will be selected

element1 ~
element2

Also quite rarely used but useful in some cases, it selects the same
as the + selector but rather than what + does by selecting only a
single element, it selects all the elements following

 * {
 background:red;
 min-height:100vh;
 }
 div,p {
 background:purple;
 }
 div p {
 background:yellow;
 }
 div > p {
 background:green;
 }
 div + p {
 background:blue;
 }
 div ~ p {
 background:white;
 }

Units
Units are used for interpreting length in your css code value. These are used in properties
like width , height , font-size , margin , padding etc.

Absolute units

Units description

in used for inches

px used for absolute pixels (usually 1/96th of an inch)

pt points, usually 1/72th of an inch

pc picas, usally 12 points

cm used for centimeters

mm used for millimeters

Q used for Quarter-millimeters, (Usually 1/40th of 1cm)

Relative units(preferred)

Units description

%
relative to the size of the parent for eg. 100% means filling all inside the
parent

em relative to the font size of the element

rem relative to the font size of the root element

vw
relative to the viewport’s width, for eg.: 2vw would be 2% of the width of
the viewport

vh
relative to the viewport’s height, for eg.: 6vh would be 6% of the height

of the viewport

Units description

vmax
relative to the viewport’s bigger dimension which could be either the height
or the width, for eg.: 3vmax would mean 3vh if the height is more than
the width and would mean 3vw otherwise

vmin
similar to vmax, differs because it would consider the smaller dimension of
either the height or the width

ch it is relative to the width of zero (0)

ex it is relative to the x height of the current font

relative units are much more preferred nowadays as their are just too many devices
with varying screen heights, widths, pixel densities etc.

Display Properites
The display CSS property sets whether an element is treated as a block or inline element
and the layout used for its children, such as flow layout, grid or flex. Formally, the display
property sets an element’s inner and outer display types.

 * {
 background: red;
 min-height: 100vh; //relative unit
 }
 div,p {
 background: purple;
 max-width: 200px //absolute unit
 }

.container {
 // various display values
 display: block;
 display: inline;
 display: inline-block;
 display: flex;
 display: inline-flex;
 display: grid;
 display: inline-grid;
 display: flow-root;
 display: table;
 display: list-item
}

FlexBox
You can use Flexbox to manage alignment and position of your elements.

To use Flexbox, give this property to the parent element:

To align the elements towards the main axis (by default it’s horizontal), we use justify-

content .

Vlaues description

flex-start Items are packed towards the start

center Items are packed on the center

flex-end Items are packed towards the end

space-around Items are equally distributed with equal space aroun them

space-
between

Items are evenly distributed .first item at the start and last items at the
end

space-evenly Items are evenly spaced with same amount space between them

To align the elements towards the cross-axis, we use align-items .

Vlaues description

flex-start Items are packed towards the start of cross axis

center Items are packed on the center of cross axis

flex-end Items are packed towards the end of the cross axis

 .parent {
 display:flex;
 }

By default, the flex direction is set to row (horizontal). To switch the flex direction to
column (vertical), use:

The direction of flex is consider the main axis and the other
axis consider as cross axis

CSS Grid
CSS grid is another way to properly align your HTML elements.

to create a new grid use

CSS grid is made of two things: columns and rows. Using grid-template-rows and grid-

template-columns , you can define how many rows and columns you want.

You can use grid with a special unit called Fr (fraction) , which refers to a portion of
remaining space.

Variables

 .parent {
 display:flex;
 flex-direction:column;
 }

 .box {
 display:grid;
 }

 .box {
 display:grid;
 grid-template-columns:400px 300px 200px;
 grid-template-rows:50px 70px 60px;
 }

 .box {
 display:grid;
 grid-template-columns:1fr 1fr 1fr;
 // or
 grid-template-columns: repeat(3,1fr)
 }

Variables are a great way to make your css more manageable, so you’re not editing the
values you want to be consistent on multiple instances of its usage. It promotes
consistency and overall management of the code.

Animations
CSS animations allow one to animate transitions or other media files on the web page.

Property Description Example

Animation
A shorthand property for setting all the
animation properties

animation: example 5s

linear 2s infinite

alternate;

Animation-name
Specifies the name of the @keyframes
animation

animation-name:

myanimation;

Animation-
duration

Specifies how long time an animation
should take to complete one cycle

animation-duration: 10s;

Animation-
timing-function

Specifies the speed curve of the
animation

animation-timing-function:

ease;>

Animation-delay
Specifies a delay for the start of an
animation

animation-delay: 5ms;

Animation-
iteration-count

Specifies the number of times an
animation should be played

animation-iteration-count:

3;

Animation-
direction

Specifies whether an animation should
be played forwards, backwards or in
alternate cycles

animation-direction:

normal;

 :root{
 --primary-color: #ffffff;
 }
 body{
 background-color: var(--primary-color);
 }

Property Description Example

Animation-play-
state

Specifies whether the animation is
running or paused

animation-play-state:

running;

Animation-fill-
mode

Specifies whether the animation is
running or paused

animation-fill-mode:

both;

Transitions
Transitions let you define the transition between two states of an element.

Property Description Example

Transition
A shorthand property for setting the four
transition properties into a single property

transition: width 2s

linear 1s;

Transition-
property

Specifies the name of the CSS property the
transition effect is for

transition-property:

none;

Transition-
duration

Specifies how many seconds or
milliseconds a transition effect takes to
complete

transition-duration:

2s;

Transition-
timing-function

Specifies the speed curve of the transition
effect

transition-timing-

function: ease-in-out;

Transition-delay
Specifies a delay (in seconds) for the
transition effect

transition-delay: 20ms;

Media queries
CSS media queries empowers you greatly when you’re creating and developing sites that
are reponsive i.e. look and function well on different screen sizes and pixel densities.

When using media queries we can adopt the following approaches

Desktop first approach

Mobile first approach

Orientation first approach

@media all and (min-width: 1024px) and (max-width: 1280px) {
 /* Targets desktop screens */
}

@media all and (min-width: 768px) and (max-width: 1024px) {
 /* Targets tablet landscape */
}

@media all and (min-width: 480px) and (max-width: 768px) {
 /* Targets tablet portrait */
}

@media all and (max-width: 480px) {
 /* Targets mobile screens*/
}

@media only screen {
 /* Targets mobile screens with width < 641pz */
}

@media only screen and (min-width: 641px) {
 /* Targets tablet screens with width > 641px */
}

@media only screen and (min-width: 1025px) {
 /* Targets large screens(desktop) with width > 1025px */
}

@media only screen and (min-width: 1441px) {
 /* Targets xlarge screens with width > 1441px */
}

@media only screen and (min-width: 1921px) {
 /* Targets xxlarge screens with width > 1921px */
}

@media screen and (orientation:portrait) {
 /* Add portrait styles here */
}
@media screen and (orientation:landscape) {
 /* Add landscape styles here */
}

Pseudo - Class
A pseudo-class is used to define a special state of an element.

For example :

Property Description

:active an activated element

:focus an element while the element has focus

:visited a visted link

:hover an element when you mouse over it

:link an unvisited link

:disabled an element while the element is disabled

:enabled an element while the element is enabled

:nth-child(n) an element that is the n-th sibling

:nth-last-child(n) an element that is the n-th sibling counting from the last sibling

 a:link {
 color: #FF0000;
}

a:visited {
 color: #00FF00;
}

a:hover {
 color: #FF00FF;
}

a:active {
 color: #0000FF;
}

